Properties of Boolean Algebras | ||||
If (A, ∪, ∩, ¬, E∩, E∪ ) is a boolean algebra, then for every a, b, and c in A, the following identities hold. ---------------------------------------------------------------------------------------------------------------------------- | ||||
a ∪ (b ∪ c) = (a ∪ b) ∪ c | a ∩ (b ∩ c) = (a ∩ b) ∩ c | Associativity | ||
a ∪ (a ∩ b) = a | a ∩ (a ∪ b) = a | Absorption | ||
a ∪ ¬a = E∩ | a ∩ ¬a = E∪ | Complements | ||
a ∪ E∪= a | a ∩ E∩= a | Right identities | ||
a ∪ b = b ∪ a | a ∩ b = b ∩ a | Commutativity | ||
E∪ ∪ a = a | E∩ ∩ a = a | Left identities | ||
a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) | a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) | Left Distributive Laws | ||
(a ∩ b) ∪ c = (a ∪ c) ∩ (b ∪ c) | (a ∪ b) ∩ c = (a ∩ c) ∪ (b ∩ c) | Right Distributive Laws | ||
---------------------------------------------------------------------------------------------------------------------------- Properties in black font are axioms. |
Preliminaries
Wednesday, December 31, 2008
The Right Distributive Laws hold for all Boolean Algebras
The Right Distributive Laws of Boolean Algebra follow immediately from the Left Distributive Laws and the Commutative Laws. We can therefore add these laws directly to our table of:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment